Home » Real Estate Sectors » VillaQuant | Quantum Real Estate

VillaQuant | Quantum Real Estate

VillaQuant – Quantum Real Estate

Discover Your Dream Villa

Economic Insights

Avg Villa Price: $1.35M | See Trends

© 2025 VillaQuant. All rights reserved.

VillaQuant - Quantum Coding for Real Estate Search's
VillaQuant – Quantum Coding for Real Estate Search

VillaQuant | The Future of Real Estate Search

In the rapidly evolving world of real estate, technology continues to push the boundaries of what’s possible. VillaTerras.com is at the forefront of this innovation with the introduction of VillaQuant1.0, a groundbreaking platform powered by quantum computing. Leveraging the extraordinary capabilities of Microsoft’s recently developed Majorana-based quantum computer, VillaQuant1.0 is set to redefine how we search for and analyze real estate properties.

The Power of Quantum Computing in Real Estate

Quantum computing represents a monumental leap forward in processing power, capable of handling complex calculations far beyond the reach of traditional computers. Microsoft’s Majorana quantum computer harnesses the unique properties of Majorana fermions—particles that are their own antiparticles—to perform computations with exceptional speed and accuracy. This breakthrough technology offers the ability to process vast amounts of data, analyze market trends in real-time, and simulate countless investment scenarios within seconds.

VillaQuant1.0: Precision and Speed

VillaQuant1.0 utilizes this quantum capability to scan, analyze, and match real estate properties with unprecedented precision. Whether you’re an investor seeking profitable opportunities, a family looking for the perfect home, or a corporation needing ideal business locations, VillaQuant1.0 can find properties that match specific criteria down to the finest detail. This includes preferences for location, price range, property type, investment potential, and even predicted future value.

How VillaQuant1.0 Works

  1. Data Integration: VillaQuant1.0 integrates real-time data from multiple sources, including MLS listings, economic indicators, and private databases. This ensures that users have access to the most comprehensive and up-to-date property listings and market insights.
  2. Quantum Simulation: Leveraging the Microsoft Majorana quantum computer, VillaQuant1.0 simulates various real estate market scenarios. This allows users to see potential future changes in property values under different economic conditions, helping investors make more informed decisions.
  3. Precision Matching: Through quantum algorithms, VillaQuant1.0 processes user preferences and market data to find properties that perfectly match specific search criteria. This reduces the time and effort typically required in property search and selection.
  4. Security and Privacy: Utilizing quantum encryption methods, all transactions and data exchanges on VillaQuant1.0 are secured, ensuring user data privacy and protection against cybersecurity threats.

The Impact of VillaQuant1.0 on Real Estate Search

With VillaQuant1.0, the search for real estate is not only faster but more precise. Investors can minimize risks and maximize returns by identifying properties that best fit their strategic goals. Homebuyers can find homes that meet all their criteria faster, without the need to sift through irrelevant listings. Moreover, real estate professionals can offer clients personalized, data-driven recommendations that were not possible before.

Access to Quantum Computing

Access to quantum computing, particularly for complex and data-intensive fields like real estate, has traditionally been a barrier. However, with the development of platforms like VillaQuant1.0 and the increasing availability of quantum computing resources, these powerful tools are becoming more accessible. VillaTerras.com provides access to VillaQuant1.0 as a service, enabling users to leverage the power of quantum computing without the need for direct access to a quantum computer like Microsoft’s Majorana.

Looking Ahead

As we continue to integrate more data sources and refine our quantum algorithms, the capabilities of VillaQuant1.0 will expand, offering even more detailed predictive insights and personalization options. The future of real estate search and investment is here, and it’s powered by quantum technology.

VillaTerras.com is committed to staying at the cutting edge of real estate technology, providing our users with innovative solutions that transform how they interact with the real estate market. VillaQuant1.0 is just the beginning. Join us on this exciting journey into the future of real estate.

Contact us to have VillaTerras create a custom Quantum Code for searching any type of Real Estate.
949.423.3778
Info@VillaTerras.com

Find Your Perfect Property

Real Estate Insights

Search Complete!
namespace QuantumRealEstate {
    open Microsoft.Quantum.Intrinsic;
    open Microsoft.Quantum.Measurement;
    open Microsoft.Quantum.Canon;
    open Microsoft.Quantum.Math;
    open Microsoft.Quantum.Convert;

    operation PrepareQuantumRegister(qubits : Qubit[]) : Unit {
        if (Length(qubits) == 0) {
            fail "Quantum register must contain at least one qubit.";
        }
        ApplyToEach(H, qubits);
    }

    operation MeasureQuantumRegister(qubits : Qubit[]) : Result[] {
        if (Length(qubits) == 0) {
            fail "No qubits provided for measurement.";
        }
        return ForEach(MResetZ, qubits);
    }

    operation OptimizeRealEstateInvestments(numProperties : Int, entangle : Bool) : Result[] {
        using (qubits = Qubit[numProperties]) {
            PrepareQuantumRegister(qubits);

            if (entangle) {
                for (i in 1..Length(qubits) - 1) {
                    Controlled X([qubits[i - 1]], qubits[i]);
                }
            }

            let investmentDecisions = MeasureQuantumRegister(qubits);
            ResetAll(qubits);
            return investmentDecisions;
        }
    }

    @EntryPoint()
    operation RunOptimization() : Unit {
        let numProperties = 5; // This can be dynamically set based on external data.
        let currentMarketCondition = true; // Assume a condition where entanglement is needed.
        let results = OptimizeRealEstateInvestments(numProperties, currentMarketCondition);
        Message($"Investment decisions: {results}");
    }

    operation TestOptimizationScenario() : Unit {
        let testResults = OptimizeRealEstateInvestments(5, true);
        if (Length(testResults) != 5) {
            fail "Test failed: Expected 5 results.";
        }
        Message("Test passed: Correct number of results obtained.");
    }
}

    // Function to prepare a quantum register in a superposition to represent investment decisions
    operation PrepareQuantumRegister(qubits : Qubit[]) : Unit {
        ApplyToEach(H, qubits);
    }

    // Function to measure the quantum register and interpret the results
    operation MeasureQuantumRegister(qubits : Qubit[]) : Result[] {
        return ForEach(MResetZ, qubits);
    }

    // Main operation to simulate optimal real estate investment decisions
    operation OptimizeRealEstateInvestments() : Result[] {
        // Initialize qubits for simulation
        using (qubits = Qubit[5]) { // Assume 5 properties for simplicity
            // Prepare qubits in a superposition state
            PrepareQuantumRegister(qubits);

            // Introduce entanglement between qubits to model correlation between properties
            for (i in 1..Length(qubits) - 1) {
                Controlled X([qubits[i-1]], qubits[i]);
            }

            // Measure qubits to collapse the state to classical information
            let investmentDecisions = MeasureQuantumRegister(qubits);

            // Reset and deallocate qubits
            ResetAll(qubits);

            return investmentDecisions;
        }
    }

    // Entry point for the simulation
    @EntryPoint()
    operation RunOptimization() : Unit {
        let results = OptimizeRealEstateInvestments();
        Message($"Investment decisions: {results}");
    }
}

  // Function to prepare a quantum register in a superposition to represent various investment options
    operation PrepareQuantumRegister(qubits : Qubit[], probabilities : Double[]) : Unit {
        for (i in 0..Length(qubits) - 1) {
            let angle = ArcCos(Sqrt(1.0 - probabilities[i]));
            Ry(2.0 * angle, qubits[i]);
        }
    }

    // Entangle qubits to represent correlations between different properties
    operation EntangleQubits(qubits : Qubit[]) : Unit {
        for (i in 0..Length(qubits) - 2) {
            Controlled X([qubits[i]], qubits[i + 1]);
        }
    }

    // Function to measure the quantum register and interpret the results
    operation MeasureQuantumRegister(qubits : Qubit[]) : Result[] {
        return ForEach(MResetZ, qubits);
    }

    // Operation to simulate investment decisions based on quantum probabilities
    operation SimulateInvestmentDecisions(qubits : Qubit[], probabilities : Double[]) : Result[] {
        PrepareQuantumRegister(qubits, probabilities);
        EntangleQubits(qubits);
        return MeasureQuantumRegister(qubits);
    }

    // Main operation to optimize real estate investments
    operation OptimizeRealEstateInvestments(probabilities : Double[]) : Result[] {
        using (qubits = Qubit[Length(probabilities)]) {
            let decisions = SimulateInvestmentDecisions(qubits, probabilities);
            ResetAll(qubits);
            return decisions;
        }
    }

    // Entry point for the simulation
    @EntryPoint()
    operation RunOptimization() : Unit {
        // Example: Probabilities of choosing to invest in each property (e.g., based on expected returns)
        let investmentProbabilities = [0.8, 0.6, 0.7, 0.5, 0.9];
        let results = OptimizeRealEstateInvestments(investmentProbabilities);
        Message($"Investment decisions: {results}");
    }
}



operation PrepareStateWithRotation(qubits : Qubit[], angles : Double[]) : Unit {
    for (idx in 0..Length(qubits) - 1) {
        Ry(2.0 * ArcSin(Sqrt(angles[idx])), qubits[idx]);
    }
}

operation EntangleQubitsInChain(qubits : Qubit[]) : Unit {
    for (idx in 0..Length(qubits) - 2) {
        CNOT(qubits[idx], qubits[idx + 1]);
    }
}

operation MeasureQubits(qubits : Qubit[]) : Result[] {
    mutable results = new Result[Length(qubits)];
    for (idx in 0..Length(qubits) - 1) {
        set results w/= idx <- MResetZ(qubits[idx]);
    }
    return results;
}

operation PerformQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[]) : Result[] {
    let angles = Map(Sqrt, probabilities); // Assuming probabilities are provided in [0, 1] and need square root for angle calculation
    PrepareStateWithRotation(qubits, angles);
    EntangleQubitsInChain(qubits);
    return MeasureQubits(qubits);
}

operation RunRealEstateQuantumAnalysis(probabilities : Double[]) : Result[] {
    using (qubits = Qubit[Length(probabilities)]) {
        return PerformQuantumDecisionAnalysis(qubits, probabilities);
    }
}

@EntryPoint()
operation ExecuteRealEstateOptimization() : Unit {
    let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6];
    let results = RunRealEstateQuantumAnalysis(investmentProbabilities);
    Message($"Investment decision outcomes: {results}");
}
}

operation PrepareStateWithRotation(qubits : Qubit[], angles : Double[]) : Unit {
    for (idx in 0..Length(qubits) - 1) {
        Ry(2.0 * ArcSin(Sqrt(angles[idx])), qubits[idx]);
    }
}

operation EntangleQubitsInChain(qubits : Qubit[]) : Unit {
    for (idx in 0..Length(qubits) - 2) {
        CNOT(qubits[idx], qubits[idx + 1]);
    }
}

operation MeasureQubits(qubits : Qubit[]) : Result[] {
    mutable results = new Result[Length(qubits)];
    for (idx in 0..Length(qubits) - 1) {
        set results w/= idx <- MResetZ(qubits[idx]);
    }
    return results;
}

operation PerformQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[]) : Result[] {
    let angles = Map(Sqrt, probabilities); // Adjust the calculation to use square roots for angle preparation
    PrepareStateWithRotation(qubits, angles);
    EntangleQubitsInChain(qubits);
    return MeasureQubits(qubits);
}

operation RunRealEstateQuantumAnalysis(probabilities : Double[]) : Result[] {
    using (qubits = Qubit[Length(probabilities)]) {
        return PerformQuantumDecisionAnalysis(qubits, probabilities);
    }
}

@EntryPoint()
operation ExecuteRealEstateOptimization() : Unit {
    let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6];
    let results = RunRealEstateQuantumAnalysis(investmentProbabilities);
    Message($"Investment decision outcomes: {results}");
}
}



    // Adjust probability inputs for more accurate state preparation
    function AdjustProbabilities(probabilities : Double[]) : Double[] {
        return Map(ArcSin, Map(Sqrt, probabilities));
    }

    // Enhance the entanglement process to represent different correlation strategies
    operation EntangleQubitsAdvanced(qubits : Qubit[], pattern : Int[]) : Unit {
        for (idx in 0..Length(pattern) - 2) {
            if (pattern[idx] == 1) {
                CNOT(qubits[idx], qubits[idx + 1]);
            }
            else {
                // Implement alternative entanglement strategy as needed
                CZ(qubits[idx], qubits[idx + 1]);
            }
        }
    }

    // Create a more dynamic investment analysis tool with parameterized entanglement
    operation PerformDynamicQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[], pattern : Int[]) : Result[] {
        let adjustedProbabilities = AdjustProbabilities(probabilities);
        PrepareStateWithRotation(qubits, adjustedProbabilities);
        EntangleQubitsAdvanced(qubits, pattern);
        return MeasureQubits(qubits);
    }

    // Run the quantum analysis with a customizable entanglement pattern
    operation RunCustomizableRealEstateQuantumAnalysis(probabilities : Double[], pattern : Int[]) : Result[] {
        using (qubits = Qubit[Length(probabilities)]) {
            return PerformDynamicQuantumDecisionAnalysis(qubits, probabilities, pattern);
        }
    }

    // Entry point to execute with different entanglement strategies
    @EntryPoint()
    operation ExecuteFlexibleRealEstateOptimization() : Unit {
        let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6];
        let entanglementPattern = [1, 0, 1, 0]; // Define a pattern of entanglement
        let results = RunCustomizableRealEstateQuantumAnalysis(investmentProbabilities, entanglementPattern);
        Message($"Flexible investment decision outcomes: {results}");
    }
}



    // Implement a function to calculate entanglement angles based on market volatility
    function CalculateEntanglementAngles(marketVolatility : Double[]) : Double[] {
        return Map(x -> PI() * x, marketVolatility);
    }

    // Dynamic entanglement based on market conditions
    operation EntangleQubitsBasedOnMarket(qubits : Qubit[], marketVolatility : Double[]) : Unit {
        let angles = CalculateEntanglementAngles(marketVolatility);
        for (idx in 0..Length(qubits) - 2) {
            let angle = angles[idx];
            RY(angle, qubits[idx + 1]);
            CNOT(qubits[idx], qubits[idx + 1]);
            RY(-angle, qubits[idx + 1]);
        }
    }

    // Comprehensive quantum decision-making analysis considering market volatility
    operation ComprehensiveQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[], marketVolatility : Double[]) : Result[] {
        let adjustedProbabilities = AdjustProbabilities(probabilities);
        PrepareStateWithRotation(qubits, adjustedProbabilities);
        EntangleQubitsBasedOnMarket(qubits, marketVolatility);
        return MeasureQubits(qubits);
    }

    // Run the analysis with market volatility adjustments
    operation RunMarketAdjustedQuantumAnalysis(probabilities : Double[], marketVolatility : Double[]) : Result[] {
        using (qubits = Qubit[Length(probabilities)]) {
            return ComprehensiveQuantumDecisionAnalysis(qubits, probabilities, marketVolatility);
        }
    }

    // Entry point for executing the quantum optimization with market considerations
    @EntryPoint()
    operation ExecuteMarketAdjustedOptimization() : Unit {
        let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6];
        let marketVolatility = [0.2, 0.3, 0.25, 0.15, 0.1]; // Hypothetical market volatility ratings
        let results = RunMarketAdjustedQuantumAnalysis(investmentProbabilities, marketVolatility);
        Message($"Market-adjusted investment decision outcomes: {results}");
    }
}
   // Introduce feedback mechanism to update probabilities based on previous outcomes
   function UpdateInvestmentProbabilities(previousResults : Result[], currentProbabilities : Double[]) : Double[] {
    mutable newProbabilities = currentProbabilities;
    for (idx in 0..Length(previousResults) - 1) {
        if (ResultAsInt(previousResults[idx]) == 1) {
            set newProbabilities w/= idx <- newProbabilities[idx] * 1.1; // Increase probability if the previous decision was to invest
        } else {
            set newProbabilities w/= idx <- newProbabilities[idx] * 0.9; // Decrease otherwise
        }
    }
    return newProbabilities;
}

// Re-run the quantum decision analysis with updated probabilities
operation AdaptiveQuantumDecisionAnalysis(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Result[] {
    mutable probabilities = initialProbabilities;
    mutable results = new Result[0];

    for (iteration in 1..iterations) {
        let currentResults = ComprehensiveQuantumDecisionAnalysis(qubits, probabilities, marketVolatility);
        set probabilities = UpdateInvestmentProbabilities(currentResults, probabilities);
        set results = currentResults;
    }

    return results;
}

// Entry point to execute the adaptive optimization
@EntryPoint()
operation ExecuteAdaptiveOptimization() : Unit {
    let initialProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6];
    let marketVolatility = [0.2, 0.3, 0.25, 0.15, 0.1]; // Market volatility ratings
    let iterations = 5; // Number of iterations to adaptively adjust the decision making

    using (qubits = Qubit[Length(initialProbabilities)]) {
        let finalResults = AdaptiveQuantumDecisionAnalysis(qubits, initialProbabilities, marketVolatility, iterations);
        Message($"Adaptive investment decision outcomes: {finalResults}");
    }
}
}



   // Additional function to normalize probabilities ensuring they remain valid between 0 and 1
   function NormalizeProbabilities(probabilities : Double[]) : Double[] {
    let total = Fold(PlusD, 0.0, probabilities);
    return Map(prob => prob / total, probabilities);
}

// Enhanced version of the update function to handle normalization
function EnhancedUpdateInvestmentProbabilities(previousResults : Result[], currentProbabilities : Double[]) : Double[] {
    mutable newProbabilities = currentProbabilities;
    for (idx in 0..Length(previousResults) - 1) {
        if (ResultAsInt(previousResults[idx]) == 1) {
            set newProbabilities w/= idx <- newProbabilities[idx] * 1.1; // Boost probability after positive outcomes
        } else {
            set newProbabilities w/= idx <- newProbabilities[idx] * 0.9; // Reduce after non-investment outcomes
        }
    }
    return NormalizeProbabilities(newProbabilities); // Normalize to keep probabilities valid
}

// Introducing quantum fluctuation to simulate real-world uncertainty
operation ApplyQuantumFluctuations(qubits : Qubit[], fluctuationRate : Double) : Unit {
    for (qubit in qubits) {
        let angle = 2.0 * PI() * fluctuationRate;
        R1(angle, qubit);
    }
}

// Comprehensive adaptive analysis with fluctuation consideration
operation ComprehensiveAdaptiveQuantumAnalysis(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], fluctuationRate : Double, iterations : Int) : Result[] {
    mutable probabilities = initialProbabilities;
    mutable results = new Result[0];

    for (iteration in 1..iterations) {
        ApplyQuantumFluctuations(qubits, fluctuationRate);
        let currentResults = ComprehensiveQuantumDecisionAnalysis(qubits, probabilities, marketVolatility);
        set probabilities = EnhancedUpdateInvestmentProbabilities(currentResults, probabilities);
        set results = currentResults;
    }

    return results;
}

// Entry point to execute the adaptive optimization with quantum fluctuations
@EntryPoint()
operation ExecuteComprehensiveAdaptiveOptimization() : Unit {
    let initialProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6];
    let marketVolatility = [0.2, 0.3, 0.25, 0.15, 0.1];
    let fluctuationRate = 0.05; // Quantum fluctuation rate
    let iterations = 10; // Number of iterations for adaptive adjustments

    using (qubits = Qubit[Length(initialProbabilities)]) {
        let finalResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, fluctuationRate, iterations);
        Message($"Final adaptive investment decision outcomes: {finalResults}");
    }
}
}





   // Operation to analyze the coherence time of qubits under different market conditions
   operation AnalyzeQubitCoherence(qubits : Qubit[], coherenceThresholds : Double[]) : Result[] {
    mutable coherenceResults = new Result[Length(qubits)];
    for (idx in 0..Length(qubits) - 1) {
        // Apply a phase rotation to simulate environmental interaction
        R1(coherenceThresholds[idx] * PI(), qubits[idx]);
        // Measure the qubit to determine if it has maintained its coherence
        set coherenceResults w/= idx <- MResetZ(qubits[idx]);
    }
    return coherenceResults;
}

// Function to dynamically adjust coherence thresholds based on market data
function AdjustCoherenceThresholds(marketData : Double[]) : Double[] {
    return Map(x -> x * 0.01, marketData); // Example: scale market data to represent coherence thresholds
}

// Operation to execute a full market simulation including coherence analysis
operation RunFullMarketSimulation(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], iterations : Int) : Unit {
    using (qubits = Qubit[Length(initialProbabilities)]) {
        let coherenceThresholds = AdjustCoherenceThresholds(marketData);
        for (iteration in 1..iterations) {
            let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); // Run analysis for one cycle
            let coherenceResults = AnalyzeQubitCoherence(qubits, coherenceThresholds);
            Message($"Simulation results for iteration {iteration}: {simulationResults}");
            Message($"Coherence analysis results for iteration {iteration}: {coherenceResults}");
        }
    }
}

// EntryPoint to start the full simulation
@EntryPoint()
operation StartFullSimulation() : Unit {
    let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60];
    let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10];
    let marketData = [500.0, 600.0, 550.0, 580.0, 610.0]; // Hypothetical market data points
    let iterations = 5; // Number of full simulations

    RunFullMarketSimulation(initialProbabilities, marketVolatility, marketData, iterations);
}
}



    // Enhance the coherence analysis to include feedback adjustment based on results
    operation AdjustQubitCoherenceBasedOnFeedback(qubits : Qubit[], coherenceResults : Result[], adjustmentFactors : Double[]) : Unit {
        for (idx in 0..Length(qubits) - 1) {
            let adjustment = adjustmentFactors[idx];
            if (ResultAsInt(coherenceResults[idx]) == 1) {
                // If the qubit maintained coherence, slightly decrease the adjustment factor
                set adjustmentFactors w/= idx <- adjustment * 0.95;
            } else {
                // If the qubit lost coherence, increase the adjustment factor
                set adjustmentFactors w/= idx <- adjustment * 1.05;
            }
            // Apply the adjusted phase rotation
            R1(adjustment * PI(), qubits[idx]);
        }
    }

    // Operation to run enhanced simulations incorporating dynamic coherence adjustments
    operation RunEnhancedMarketSimulations(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], iterations : Int) : Unit {
        using (qubits = Qubit[Length(initialProbabilities)]) {
            let coherenceThresholds = AdjustCoherenceThresholds(marketData);
            mutable adjustmentFactors = coherenceThresholds; // Initialize adjustments based on initial thresholds

            for (iteration in 1..iterations) {
                let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); // Single cycle analysis
                let coherenceResults = AnalyzeQubitCoherence(qubits, coherenceThresholds);
                AdjustQubitCoherenceBasedOnFeedback(qubits, coherenceResults, adjustmentFactors);
                Message($"Enhanced simulation results for iteration {iteration}: {simulationResults}");
                Message($"Coherence adjustment factors for iteration {iteration}: {adjustmentFactors}");
            }
        }
    }

    // EntryPoint to start the enhanced simulations with dynamic coherence adjustments
    @EntryPoint()
    operation StartEnhancedSimulations() : Unit {
        let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60];
        let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10];
        let marketData = [500.0, 600.0, 550.0, 580.0, 610.0]; // Example market data points
        let iterations = 10; // Number of enhanced simulations

        RunEnhancedMarketSimulations(initialProbabilities, marketVolatility, marketData, iterations);
    }
}





    // Enhance the adjustment mechanism to consider historical coherence data
    function UpdateAdjustmentFactorsBasedOnHistory(adjustmentFactors : Double[], historicalCoherence : Result[][], iteration : Int) : Double[] {
        mutable updatedFactors = adjustmentFactors;

        // Adjust based on historical results to find a trend in coherence maintenance
        for (idx in 0..Length(adjustmentFactors) - 1) {
            let historicalResults = [historicalCoherence[j][idx] for j in 0..iteration - 1];
            let successes = Fold(PlusI, 0, [ResultAsInt(result) for result in historicalResults]);

            // Apply a stronger adjustment if coherence was frequently lost
            if (2 * successes < iteration) { // Less than 50% success rate
                set updatedFactors w/= idx <- updatedFactors[idx] * 1.10;
            } else {
                set updatedFactors w/= idx <- updatedFactors[idx] * 0.90;
            }
        }
        return updatedFactors;
    }

    // Implement a feedback loop to adaptively adjust the coherence strategies over multiple iterations
    operation RunAdaptiveCoherenceSimulations(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], iterations : Int) : Unit {
        using (qubits = Qubit[Length(initialProbabilities)]) {
            let initialCoherenceThresholds = AdjustCoherenceThresholds(marketData);
            mutable adjustmentFactors = initialCoherenceThresholds;
            mutable historicalCoherence = new Result[][iterations];

            for (iteration in 1..iterations) {
                let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1);
                let coherenceResults = AnalyzeQubitCoherence(qubits, Map(idx -> adjustmentFactors[idx] * PI(), initialCoherenceThresholds));
                set historicalCoherence w/= iteration - 1 <- coherenceResults;
                set adjustmentFactors = UpdateAdjustmentFactorsBasedOnHistory(adjustmentFactors, historicalCoherence, iteration);
                Message($"Iteration {iteration}: Simulation results - {simulationResults}, Coherence results - {coherenceResults}");
            }
        }
    }

    // EntryPoint to execute the adaptive coherence simulations
    @EntryPoint()
    operation ExecuteAdaptiveCoherenceSimulations() : Unit {
        let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60];
        let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10];
        let marketData = [500.0, 600.0, 550.0, 580.0, 610.0];
        let iterations = 20;

        RunAdaptiveCoherenceSimulations(initialProbabilities, marketVolatility, marketData, iterations);
    }
}


// Include a module for visualizing the results of simulations open Microsoft.Quantum.Diagnostics;

// Function to convert results into percentage of coherence function CoherencePercentage(historicalCoherence : Result[][], iterations : Int) : Double[] { let totalQubits = Length(historicalCoherence[0]); mutable percentages = new Double[totalQubits];


for (qubitIdx in 0..totalQubits - 1) {
    let coherenceCount = Fold(PlusI, 0, [ResultAsInt(historicalCoherence[iter][qubitIdx]) for iter in 0..iterations - 1]);
    let percentage = (100.0 * IntAsDouble(coherenceCount)) / IntAsDouble(iterations);
    set percentages w/= qubitIdx <- percentage;
}

return percentages;
}

// Visualize coherence over multiple iterations to monitor stability and performance operation VisualizeCoherenceTrends(historicalCoherence : Result[][], iterations : Int) : Unit { let coherencePercentages = CoherencePercentage(historicalCoherence, iterations); Message("Coherence percentages over iterations:"); for (idx in 0..Length(coherencePercentages) - 1) { Message($"Qubit {idx}: {coherencePercentages[idx]}%"); } }

// Enhance decision making with a Quantum Annealer approach for solving complex optimization problems operation QuantumAnnealerOptimization(initialProbabilities : Double[], iterations : Int) : Result[] { using (qubits = Qubit[Length(initialProbabilities)]) { mutable bestResult = new Result[Length(qubits)]; mutable bestScore = 0.0;


    for (iter in 1..iterations) {
        let results = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, [0.05], 0.05, 1);
        let currentScore = Fold(PlusD, 0.0, [ResultAsDouble(result) for result in results]);

        if (currentScore > bestScore) {
            set bestScore = currentScore;
            set bestResult = results;
        }
    }

    return bestResult;
}
}

// EntryPoint for a comprehensive quantum real estate optimization including annealing simulation @EntryPoint() operation ExecuteQuantumAnnealingOptimization() : Unit { let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60]; let iterations = 100; let optimalResults = QuantumAnnealerOptimization(initialProbabilities, iterations);


Message($"Optimal investment decisions after quantum annealing: {optimalResults}");
}






// Integrate environmental factors into quantum analysis for real-time adjustments function AdjustProbabilitiesForEnvironmentalFactors(probabilities : Double[], environmentalFactors : Double[]) : Double[] { return Zip(probabilities, environmentalFactors, (prob, env) -> prob * env); }

// Update probabilities based on environmental and market conditions operation UpdateProbabilitiesWithRealTimeData(initialProbabilities : Double[], marketData : Double[], environmentalData : Double[]) : Double[] { let marketAdjustedProbabilities = AdjustCoherenceThresholds(marketData); let environmentAdjustedProbabilities = AdjustProbabilitiesForEnvironmentalFactors(marketAdjustedProbabilities, environmentalData); return NormalizeProbabilities(environmentAdjustedProbabilities); }

// Run a simulation that adapts to changing real estate market and environmental conditions operation RunDynamicSimulation(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], environmentalData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { mutable dynamicProbabilities = initialProbabilities;


    for (iteration in 1..iterations) {
        let updatedProbabilities = UpdateProbabilitiesWithRealTimeData(dynamicProbabilities, marketData, environmentalData);
        let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, updatedProbabilities, marketVolatility, 0.05, 1);
        Message($"Dynamic simulation results for iteration {iteration}: {simulationResults}");

        // Update probabilities based on the latest simulation results and real-time data
        set dynamicProbabilities = updatedProbabilities;
    }
}
}

// EntryPoint to execute dynamic simulations accounting for market and environmental changes @EntryPoint() operation ExecuteDynamicSimulations() : Unit { let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60]; let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10]; let marketData = [500.0, 600.0, 550.0, 580.0, 610.0]; // Simulated market data points let environmentalData = [1.0, 0.8, 0.9, 1.1, 0.85]; // Environmental impact factors let iterations = 15;


RunDynamicSimulation(initialProbabilities, marketVolatility, marketData, environmentalData, iterations);
}




or (iteration in 1..iterations) {
    let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1);
    let currentRisk = CalculateRiskFromResults(currentResults);

    if (currentRisk < bestRisk) {
        set bestRisk = currentRisk;
        set bestDecisions = currentResults;
    }

    Message($"Iteration {iteration}: Current Risk = {currentRisk}");
}

Message($"Best investment decisions with lowest risk: {bestDecisions}");
}
}

// EntryPoint to run the risk-adjusted simulation for real estate investment @EntryPoint() operation ExecuteRiskAdjustedSimulations() : Unit { let initialProbabilities = [0.70, 0.60, 0.65, 0.80, 0.75]; let marketVolatility = [0.25, 0.35, 0.30, 0.20, 0.25]; let iterations = 20;


RiskAdjustedInvestmentDecisions(initialProbabilities, marketVolatility, iterations);


// Introduce a feedback mechanism to refine investment strategies over time operation FeedbackBasedRefinement(initialResults : Result[], initialRisk : Double, qubits : Qubit[], probabilities : Double[], marketVolatility : Double[], iterations : Int) : (Result[], Double) { mutable refinedResults = initialResults; mutable refinedRisk = initialRisk;

for (iteration in 1..iterations) {
    let updatedProbabilities = UpdateProbabilitiesWithRealTimeData(probabilities, Map(x -> x + 0.01 * iteration, marketVolatility), probabilities); // Slightly adjust market data
    let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, updatedProbabilities, marketVolatility, 0.05, 1);
    let currentRisk = CalculateRiskFromResults(currentResults);

    // Check if the new strategy offers a lower risk
    if (currentRisk < refinedRisk) {
        set refinedRisk = currentRisk;
        set refinedResults = currentResults;
    }
}

return (refinedResults, refinedRisk);

}

// Implement a decision loop that adapts based on feedback over multiple market scenarios operation DecisionFeedbackLoop(initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { let (initialResults, initialRisk) = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); let (optimalResults, optimalRisk) = FeedbackBasedRefinement(initialResults, initialRisk, qubits, initialProbabilities, marketVolatility, iterations);

Message($"Optimal risk-adjusted decisions after feedback loop: {optimalResults}");
Message($"Achieved risk level: {optimalRisk}");
}


}

// EntryPoint to execute the entire decision process including dynamic feedback @EntryPoint() operation StartDecisionFeedbackProcess() : Unit { let initialProbabilities = [0.75, 0.70, 0.65, 0.60, 0.55]; let marketVolatility = [0.20, 0.22, 0.25, 0.28, 0.30]; let iterations = 10;

DecisionFeedbackLoop(initialProbabilities, marketVolatility, iterations);






// Enhance the feedback loop with environmental considerations function IncorporateEnvironmentalFactors(probabilities : Double[], environmentalImpact : Double[]) : Double[] { return Zip(probabilities, environmentalImpact, (prob, impact) -> prob * impact); }

// Modify the decision process to include environmental data in the feedback loop operation EnvironmentalFeedbackDecisionLoop(initialProbabilities : Double[], marketVolatility : Double[], environmentalData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { // Initial comprehensive analysis to set baseline results and risk let (baselineResults, baselineRisk) = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1);

mutable optimalResults = baselineResults;
mutable optimalRisk = baselineRisk;

for (iteration in 1..iterations) {
    // Adjust probabilities for market and environmental factors each iteration
    let adjustedProbabilities = UpdateProbabilitiesWithRealTimeData(initialProbabilities, marketVolatility, environmentalData);
    let envAdjustedProbabilities = IncorporateEnvironmentalFactors(adjustedProbabilities, environmentalData);

    let (currentResults, currentRisk) = FeedbackBasedRefinement(baselineResults, baselineRisk, qubits, envAdjustedProbabilities, marketVolatility, 1);

    // Evaluate if current iteration provides better risk management
    if (currentRisk < optimalRisk) {
        set optimalRisk = currentRisk;
        set optimalResults = currentResults;
    }
}

Message($"Optimal decisions with environmental considerations: {optimalResults}");
Message($"Lowest achieved risk: {optimalRisk}");
}


}

// EntryPoint to initiate the environmentally adjusted decision feedback loop @EntryPoint() operation ExecuteEnvironmentallySensitiveOptimizations() : Unit { let initialProbabilities = [0.65, 0.60, 0.70, 0.75, 0.80]; let marketVolatility = [0.25, 0.20, 0.30, 0.35, 0.25]; let environmentalData = [0.95, 1.05, 1.00, 0.90, 0.85]; // Example environmental impacts let iterations = 15;

EnvironmentalFeedbackDecisionLoop(initialProbabilities, marketVolatility, environmentalData, iterations);



// Advanced function to dynamically adjust market volatility based on external economic indicators
function DynamicallyAdjustMarketVolatility(marketVolatility : Double[], economicIndicators : Double[]) : Double[] {
    return Zip(marketVolatility, economicIndicators, (volatility, indicator) -> volatility * indicator);
}

// Integrate advanced economic indicators into the decision-making process
operation IntegrateEconomicIndicators(initialProbabilities : Double[], marketVolatility : Double[], economicIndicators : Double[], environmentalData : Double[], iterations : Int) : Unit {
    using (qubits = Qubit[Length(initialProbabilities)]) {
        // Initial setup with environmental and economic adjustments
        let envAdjustedProbabilities = IncorporateEnvironmentalFactors(initialProbabilities, environmentalData);
        let econAdjustedVolatility = DynamicallyAdjustMarketVolatility(marketVolatility, economicIndicators);

        mutable optimalResults = new Result[Length(qubits)];
        mutable optimalRisk = 1.0; // Start with the highest possible risk

        for (iteration in 1..iterations) {
            let currentProbabilities = UpdateProbabilitiesWithRealTimeData(envAdjustedProbabilities, econAdjustedVolatility, environmentalData);
            let (currentResults, currentRisk) = ComprehensiveAdaptiveQuantumAnalysis(qubits, currentProbabilities, econAdjustedVolatility, 0.05, 1);

            // Check for optimal risk and results
            if (currentRisk < optimalRisk) {
                set optimalRisk = currentRisk;
                set optimalResults = currentResults;
            }

            // Provide feedback for each iteration
            Message($"Iteration {iteration}: Current Risk = {currentRisk}, Results = {currentResults}");
        }

        // Final output after iterations
        Message($"Final optimal decisions with economic indicators considered: {optimalResults}");
        Message($"Final optimal risk level: {optimalRisk}");
    }
}

// EntryPoint to execute the simulation with economic and environmental feedback
@EntryPoint()
operation ExecuteAdvancedEconomicOptimization() : Unit {
    let initialProbabilities = [0.70, 0.65, 0.60, 0.55, 0.50];
    let marketVolatility = [0.22, 0.28, 0.25, 0.21, 0.27];
    let economicIndicators = [1.02, 0.98, 1.05, 0.99, 1.03]; // Simulated economic factors
    let environmentalData = [0.88, 0.92, 0.91, 0.89, 0.90]; // Environmental impacts
    let iterations = 20;

    IntegrateEconomicIndicators(initialProbabilities, marketVolatility, economicIndicators, environmentalData, iterations);
}


// Optimize feedback mechanism to refine probability adjustments based on both risk and return
function RefineProbabilitiesBasedOnPerformance(results : Result[], risks : Double[], returns : Double[]) : Double[] {
    mutable refinedProbabilities = new Double[Length(results)];

    for (idx in 0..Length(results) - 1) {
        if (ResultAsInt(results[idx]) == 1) {
            // Increase investment probability if the result was positive and adjust based on risk/return ratio
            set refinedProbabilities w/= idx <- returns[idx] / risks[idx];
        } else {
            // Decrease probability to align with lower performance or higher risk
            set refinedProbabilities w/= idx <- returns[idx] * risks[idx];
        }
    }

    return NormalizeProbabilities(refinedProbabilities);
}

// Include an analysis phase to evaluate returns vs. risks before adjusting probabilities
operation AnalyzeAndAdjustInvestments(qubits : Qubit[], probabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit {
    mutable bestResults = new Result[Length(qubits)];
    mutable bestPerformance = 0.0;

    for (iteration in 1..iterations) {
        let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1);
        let currentRisks = CalculateRiskFromResults(currentResults);
        let currentReturns = CalculateReturnsFromResults(currentResults); // Assume this function exists
        let performanceScore = Fold(PlusD, 0.0, Map(idx -> currentReturns[idx] / currentRisks[idx], Indices(currentReturns)));

        if (performanceScore > bestPerformance) {
            set bestPerformance = performanceScore;
            set bestResults = currentResults;
        }

        // Adjust probabilities based on new insights from the latest iteration
        set probabilities = RefineProbabilitiesBasedOnPerformance(currentResults, currentRisks, currentReturns);
    }

    Message($"Optimal decisions based on refined adjustments: {bestResults}");
    Message($"Best performance score: {bestPerformance}");
}

// EntryPoint to execute the refined adjustment process for quantum-based real estate investments
@EntryPoint()
operation ExecuteRefinedAdjustmentProcess() : Unit {
    let initialProbabilities = [0.68, 0.73, 0.77, 0.65, 0.70];
    let marketVolatility = [0.23, 0.19, 0.26, 0.22, 0.24];
    let iterations = 15;

    using (qubits = Qubit[Length(initialProbabilities)]) {
        AnalyzeAndAdjustInvestments(qubits, initialProbabilities, marketVolatility, iterations);
    }
}





// Function to simulate market fluctuations and adjust probabilities dynamically
function SimulateMarketFluctuations(currentProbabilities : Double[], fluctuationRate : Double) : Double[] {
    return Map(prob -> prob * (1.0 + (RandomReal() - 0.5) * fluctuationRate), currentProbabilities);
}

// Operation to perform a full market simulation including dynamic adjustments for market fluctuations
operation PerformFullMarketSimulation(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit {
    mutable probabilities = initialProbabilities;

    for (iteration in 1..iterations) {
        // Simulate market fluctuations at each iteration
        set probabilities = SimulateMarketFluctuations(probabilities, 0.1); // 10% fluctuation rate

        let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1);
        Message($"Results for iteration {iteration}: {currentResults}");

        // Update probabilities based on performance analysis
        let currentRisks = CalculateRiskFromResults(currentResults);
        let currentReturns = CalculateReturnsFromResults(currentResults); // Assume function calculates returns
        set probabilities = RefineProbabilitiesBasedOnPerformance(currentResults, currentRisks, currentReturns);
    }

    Message($"Final probabilities after full market simulation: {probabilities}");
}

// EntryPoint to initiate a comprehensive simulation with fluctuation adjustments
@EntryPoint()
operation StartComprehensiveMarketSimulation() : Unit {
    let initialProbabilities = [0.60, 0.65, 0.70, 0.75, 0.80];
    let marketVolatility = [0.24, 0.22, 0.25, 0.23, 0.21];
    let iterations = 20;

    using (qubits = Qubit[Length(initialProbabilities)]) {
        PerformFullMarketSimulation(qubits, initialProbabilities, marketVolatility, iterations);
    }
}



// Function to simulate market fluctuations and adjust probabilities dynamically
function SimulateMarketFluctuations(currentProbabilities : Double[], fluctuationRate : Double) : Double[] {
    return Map(prob -> prob * (1.0 + (RandomReal() - 0.5) * fluctuationRate), currentProbabilities);
}

// Operation to perform a full market simulation including dynamic adjustments for market fluctuations
operation PerformFullMarketSimulation(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit {
    mutable probabilities = initialProbabilities;

    for (iteration in 1..iterations) {
        // Simulate market fluctuations at each iteration
        set probabilities = SimulateMarketFluctuations(probabilities, 0.1); // 10% fluctuation rate

        let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1);
        Message($"Results for iteration {iteration}: {currentResults}");

        // Update probabilities based on performance analysis
        let currentRisks = CalculateRiskFromResults(currentResults);
        let currentReturns = CalculateReturnsFromResults(currentResults); // Assume function calculates returns
        set probabilities = RefineProbabilitiesBasedOnPerformance(currentResults, currentRisks, currentReturns);
    }

    Message($"Final probabilities after full market simulation: {probabilities}");
}

// EntryPoint to initiate a comprehensive simulation with fluctuation adjustments
@EntryPoint()
operation StartComprehensiveMarketSimulation() : Unit {
    let initialProbabilities = [0.60, 0.65, 0.70, 0.75, 0.80];
    let marketVolatility = [0.24, 0.22, 0.25, 0.23, 0.21];
    let iterations = 20;

    using (qubits = Qubit[Length(initialProbabilities)]) {
        PerformFullMarketSimulation(qubits, initialProbabilities, marketVolatility, iterations);
    }
}




// Implement additional analysis to evaluate the stability of investment decisions over time
function EvaluateDecisionStability(historicalResults : Result[][], iterations : Int) : Double {
    mutable stabilityScores = new Double[Length(historicalResults[0])];

    for (qubitIdx in 0..Length(historicalResults[0]) - 1) {
        let decisions = [ResultAsInt(historicalResults[iter][qubitIdx]) for iter in 0..iterations - 1];
        let mean = Average(decisions);
        let variance = Fold(PlusD, 0.0, [PowD(dec - mean, 2.0) for dec in decisions]) / (Length(decisions) - 1.0);
        set stabilityScores w/= qubitIdx <- 1.0 - Sqrt(variance); // Higher score indicates more stability
    }

    return Average(stabilityScores);
}

// Run simulations to assess and enhance decision-making stability
operation StabilityEnhancedQuantumSimulation(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit {
    mutable probabilities = initialProbabilities;
    mutable historicalResults = new Result[][iterations];

    for (iteration in 1..iterations) {
        let results = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1);
        set historicalResults w/= iteration - 1 <- results;
        set probabilities = LearnFromPastSimulations(historicalResults, probabilities); // Dynamic learning
    }

    let stabilityScore = EvaluateDecisionStability(historicalResults, iterations);
    Message($"Stability score for investment decisions over {iterations} iterations: {stabilityScore}");
}

// EntryPoint to execute stability-focused simulations
@EntryPoint()
operation ExecuteStabilityFocusedSimulation() : Unit {
    let initialProbabilities = [0.71, 0.67, 0.74, 0.70, 0.73];
    let marketVolatility = [0.23, 0.21, 0.24, 0.22, 0.25];
    let iterations = 30;

    using (qubits = Qubit[Length(initialProbabilities)]) {
        StabilityEnhancedQuantumSimulation(qubits, initialProbabilities, marketVolatility, iterations);
    }
}




// Enhance the economic shock adjustment by considering a time-decaying factor on the shock's impact
function ApplyTimeDecayingEconomicImpact(probabilities : Double[], economicShockData : Double[], iteration : Int) : Double[] {
    return Zip(probabilities, economicShockData, (prob, shock) -> {
        // Decrease the shock impact over time using an exponential decay model
        let decayFactor = Exp(-0.1 * IntAsDouble(iteration)); // Decay rate example
        return prob * (1.0 - decayFactor * shock / 100.0);
    });
}

// Run a refined simulation to model the decay of economic shocks over multiple iterations
operation SimulateEconomicShockDecay(qubits : Qubit[], initialProbabilities : Double[], economicShockData : Double[], iterations : Int) : Unit {
    mutable probabilities = initialProbabilities;

    for (iteration in 1..iterations) {
        // Apply the time-decaying impact of economic shocks
        let timeAdjustedProbabilities = ApplyTimeDecayingEconomicImpact(probabilities, economicShockData, iteration);
        let results = ComprehensiveAdaptiveQuantumAnalysis(qubits, timeAdjustedProbabilities, [0.05], 0.05, 1);

        // Log results to observe the change over time
        Message($"Iteration {iteration}: Adjusted Results = {results}");
        
        // Update probabilities based on simulation feedback, assuming continual learning
        set probabilities = LearnFromPastSimulations([results], probabilities);
    }
}

// EntryPoint to execute the time-decay simulation for economic shocks
@EntryPoint()
operation ExecuteTimeDecayEconomicShockSimulation() : Unit {
    let initialProbabilities = [0.62, 0.78, 0.83, 0.69, 0.72];
    let economicShockData = [3.5, 2.0, 4.0, 3.0, 2.5]; // Initial shock values in percentage
    let iterations = 25;

    using (qubits = Qubit[Length(initialProbabilities)]) {
        SimulateEconomicShockDecay(qubits, initialProbabilities, economicShockData, iterations);
    }
}





































namespace QuantumRealEstate { open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Measurement; open Microsoft.Quantum.Canon; open Microsoft.Quantum.Math; open Microsoft.Quantum.Convert; operation PrepareQuantumRegister(qubits : Qubit[]) : Unit { if (Length(qubits) == 0) { fail “Quantum register must contain at least one qubit.”; } ApplyToEach(H, qubits); } operation MeasureQuantumRegister(qubits : Qubit[]) : Result[] { if (Length(qubits) == 0) { fail “No qubits provided for measurement.”; } return ForEach(MResetZ, qubits); } operation OptimizeRealEstateInvestments(numProperties : Int, entangle : Bool) : Result[] { using (qubits = Qubit[numProperties]) { PrepareQuantumRegister(qubits); if (entangle) { for (i in 1..Length(qubits) – 1) { Controlled X([qubits[i – 1]], qubits[i]); } } let investmentDecisions = MeasureQuantumRegister(qubits); ResetAll(qubits); return investmentDecisions; } } @EntryPoint() operation RunOptimization() : Unit { let numProperties = 5; // This can be dynamically set based on external data. let currentMarketCondition = true; // Assume a condition where entanglement is needed. let results = OptimizeRealEstateInvestments(numProperties, currentMarketCondition); Message($”Investment decisions: {results}”); } operation TestOptimizationScenario() : Unit { let testResults = OptimizeRealEstateInvestments(5, true); if (Length(testResults) != 5) { fail “Test failed: Expected 5 results.”; } Message(“Test passed: Correct number of results obtained.”); } } // Function to prepare a quantum register in a superposition to represent investment decisions operation PrepareQuantumRegister(qubits : Qubit[]) : Unit { ApplyToEach(H, qubits); } // Function to measure the quantum register and interpret the results operation MeasureQuantumRegister(qubits : Qubit[]) : Result[] { return ForEach(MResetZ, qubits); } // Main operation to simulate optimal real estate investment decisions operation OptimizeRealEstateInvestments() : Result[] { // Initialize qubits for simulation using (qubits = Qubit[5]) { // Assume 5 properties for simplicity // Prepare qubits in a superposition state PrepareQuantumRegister(qubits); // Introduce entanglement between qubits to model correlation between properties for (i in 1..Length(qubits) – 1) { Controlled X([qubits[i-1]], qubits[i]); } // Measure qubits to collapse the state to classical information let investmentDecisions = MeasureQuantumRegister(qubits); // Reset and deallocate qubits ResetAll(qubits); return investmentDecisions; } } // Entry point for the simulation @EntryPoint() operation RunOptimization() : Unit { let results = OptimizeRealEstateInvestments(); Message($”Investment decisions: {results}”); } } // Function to prepare a quantum register in a superposition to represent various investment options operation PrepareQuantumRegister(qubits : Qubit[], probabilities : Double[]) : Unit { for (i in 0..Length(qubits) – 1) { let angle = ArcCos(Sqrt(1.0 – probabilities[i])); Ry(2.0 * angle, qubits[i]); } } // Entangle qubits to represent correlations between different properties operation EntangleQubits(qubits : Qubit[]) : Unit { for (i in 0..Length(qubits) – 2) { Controlled X([qubits[i]], qubits[i + 1]); } } // Function to measure the quantum register and interpret the results operation MeasureQuantumRegister(qubits : Qubit[]) : Result[] { return ForEach(MResetZ, qubits); } // Operation to simulate investment decisions based on quantum probabilities operation SimulateInvestmentDecisions(qubits : Qubit[], probabilities : Double[]) : Result[] { PrepareQuantumRegister(qubits, probabilities); EntangleQubits(qubits); return MeasureQuantumRegister(qubits); } // Main operation to optimize real estate investments operation OptimizeRealEstateInvestments(probabilities : Double[]) : Result[] { using (qubits = Qubit[Length(probabilities)]) { let decisions = SimulateInvestmentDecisions(qubits, probabilities); ResetAll(qubits); return decisions; } } // Entry point for the simulation @EntryPoint() operation RunOptimization() : Unit { // Example: Probabilities of choosing to invest in each property (e.g., based on expected returns) let investmentProbabilities = [0.8, 0.6, 0.7, 0.5, 0.9]; let results = OptimizeRealEstateInvestments(investmentProbabilities); Message($”Investment decisions: {results}”); } } operation PrepareStateWithRotation(qubits : Qubit[], angles : Double[]) : Unit { for (idx in 0..Length(qubits) – 1) { Ry(2.0 * ArcSin(Sqrt(angles[idx])), qubits[idx]); } } operation EntangleQubitsInChain(qubits : Qubit[]) : Unit { for (idx in 0..Length(qubits) – 2) { CNOT(qubits[idx], qubits[idx + 1]); } } operation MeasureQubits(qubits : Qubit[]) : Result[] { mutable results = new Result[Length(qubits)]; for (idx in 0..Length(qubits) – 1) { set results w/= idx <- MResetZ(qubits[idx]); } return results; } operation PerformQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[]) : Result[] { let angles = Map(Sqrt, probabilities); // Assuming probabilities are provided in [0, 1] and need square root for angle calculation PrepareStateWithRotation(qubits, angles); EntangleQubitsInChain(qubits); return MeasureQubits(qubits); } operation RunRealEstateQuantumAnalysis(probabilities : Double[]) : Result[] { using (qubits = Qubit[Length(probabilities)]) { return PerformQuantumDecisionAnalysis(qubits, probabilities); } } @EntryPoint() operation ExecuteRealEstateOptimization() : Unit { let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6]; let results = RunRealEstateQuantumAnalysis(investmentProbabilities); Message($"Investment decision outcomes: {results}"); } } operation PrepareStateWithRotation(qubits : Qubit[], angles : Double[]) : Unit { for (idx in 0..Length(qubits) - 1) { Ry(2.0 * ArcSin(Sqrt(angles[idx])), qubits[idx]); } } operation EntangleQubitsInChain(qubits : Qubit[]) : Unit { for (idx in 0..Length(qubits) - 2) { CNOT(qubits[idx], qubits[idx + 1]); } } operation MeasureQubits(qubits : Qubit[]) : Result[] { mutable results = new Result[Length(qubits)]; for (idx in 0..Length(qubits) - 1) { set results w/= idx <- MResetZ(qubits[idx]); } return results; } operation PerformQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[]) : Result[] { let angles = Map(Sqrt, probabilities); // Adjust the calculation to use square roots for angle preparation PrepareStateWithRotation(qubits, angles); EntangleQubitsInChain(qubits); return MeasureQubits(qubits); } operation RunRealEstateQuantumAnalysis(probabilities : Double[]) : Result[] { using (qubits = Qubit[Length(probabilities)]) { return PerformQuantumDecisionAnalysis(qubits, probabilities); } } @EntryPoint() operation ExecuteRealEstateOptimization() : Unit { let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6]; let results = RunRealEstateQuantumAnalysis(investmentProbabilities); Message($"Investment decision outcomes: {results}"); } } // Adjust probability inputs for more accurate state preparation function AdjustProbabilities(probabilities : Double[]) : Double[] { return Map(ArcSin, Map(Sqrt, probabilities)); } // Enhance the entanglement process to represent different correlation strategies operation EntangleQubitsAdvanced(qubits : Qubit[], pattern : Int[]) : Unit { for (idx in 0..Length(pattern) - 2) { if (pattern[idx] == 1) { CNOT(qubits[idx], qubits[idx + 1]); } else { // Implement alternative entanglement strategy as needed CZ(qubits[idx], qubits[idx + 1]); } } } // Create a more dynamic investment analysis tool with parameterized entanglement operation PerformDynamicQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[], pattern : Int[]) : Result[] { let adjustedProbabilities = AdjustProbabilities(probabilities); PrepareStateWithRotation(qubits, adjustedProbabilities); EntangleQubitsAdvanced(qubits, pattern); return MeasureQubits(qubits); } // Run the quantum analysis with a customizable entanglement pattern operation RunCustomizableRealEstateQuantumAnalysis(probabilities : Double[], pattern : Int[]) : Result[] { using (qubits = Qubit[Length(probabilities)]) { return PerformDynamicQuantumDecisionAnalysis(qubits, probabilities, pattern); } } // Entry point to execute with different entanglement strategies @EntryPoint() operation ExecuteFlexibleRealEstateOptimization() : Unit { let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6]; let entanglementPattern = [1, 0, 1, 0]; // Define a pattern of entanglement let results = RunCustomizableRealEstateQuantumAnalysis(investmentProbabilities, entanglementPattern); Message($"Flexible investment decision outcomes: {results}"); } } // Implement a function to calculate entanglement angles based on market volatility function CalculateEntanglementAngles(marketVolatility : Double[]) : Double[] { return Map(x -> PI() * x, marketVolatility); } // Dynamic entanglement based on market conditions operation EntangleQubitsBasedOnMarket(qubits : Qubit[], marketVolatility : Double[]) : Unit { let angles = CalculateEntanglementAngles(marketVolatility); for (idx in 0..Length(qubits) – 2) { let angle = angles[idx]; RY(angle, qubits[idx + 1]); CNOT(qubits[idx], qubits[idx + 1]); RY(-angle, qubits[idx + 1]); } } // Comprehensive quantum decision-making analysis considering market volatility operation ComprehensiveQuantumDecisionAnalysis(qubits : Qubit[], probabilities : Double[], marketVolatility : Double[]) : Result[] { let adjustedProbabilities = AdjustProbabilities(probabilities); PrepareStateWithRotation(qubits, adjustedProbabilities); EntangleQubitsBasedOnMarket(qubits, marketVolatility); return MeasureQubits(qubits); } // Run the analysis with market volatility adjustments operation RunMarketAdjustedQuantumAnalysis(probabilities : Double[], marketVolatility : Double[]) : Result[] { using (qubits = Qubit[Length(probabilities)]) { return ComprehensiveQuantumDecisionAnalysis(qubits, probabilities, marketVolatility); } } // Entry point for executing the quantum optimization with market considerations @EntryPoint() operation ExecuteMarketAdjustedOptimization() : Unit { let investmentProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6]; let marketVolatility = [0.2, 0.3, 0.25, 0.15, 0.1]; // Hypothetical market volatility ratings let results = RunMarketAdjustedQuantumAnalysis(investmentProbabilities, marketVolatility); Message($”Market-adjusted investment decision outcomes: {results}”); } } // Introduce feedback mechanism to update probabilities based on previous outcomes function UpdateInvestmentProbabilities(previousResults : Result[], currentProbabilities : Double[]) : Double[] { mutable newProbabilities = currentProbabilities; for (idx in 0..Length(previousResults) – 1) { if (ResultAsInt(previousResults[idx]) == 1) { set newProbabilities w/= idx <- newProbabilities[idx] * 1.1; // Increase probability if the previous decision was to invest } else { set newProbabilities w/= idx <- newProbabilities[idx] * 0.9; // Decrease otherwise } } return newProbabilities; } // Re-run the quantum decision analysis with updated probabilities operation AdaptiveQuantumDecisionAnalysis(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Result[] { mutable probabilities = initialProbabilities; mutable results = new Result[0]; for (iteration in 1..iterations) { let currentResults = ComprehensiveQuantumDecisionAnalysis(qubits, probabilities, marketVolatility); set probabilities = UpdateInvestmentProbabilities(currentResults, probabilities); set results = currentResults; } return results; } // Entry point to execute the adaptive optimization @EntryPoint() operation ExecuteAdaptiveOptimization() : Unit { let initialProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6]; let marketVolatility = [0.2, 0.3, 0.25, 0.15, 0.1]; // Market volatility ratings let iterations = 5; // Number of iterations to adaptively adjust the decision making using (qubits = Qubit[Length(initialProbabilities)]) { let finalResults = AdaptiveQuantumDecisionAnalysis(qubits, initialProbabilities, marketVolatility, iterations); Message($"Adaptive investment decision outcomes: {finalResults}"); } } } // Additional function to normalize probabilities ensuring they remain valid between 0 and 1 function NormalizeProbabilities(probabilities : Double[]) : Double[] { let total = Fold(PlusD, 0.0, probabilities); return Map(prob => prob / total, probabilities); } // Enhanced version of the update function to handle normalization function EnhancedUpdateInvestmentProbabilities(previousResults : Result[], currentProbabilities : Double[]) : Double[] { mutable newProbabilities = currentProbabilities; for (idx in 0..Length(previousResults) – 1) { if (ResultAsInt(previousResults[idx]) == 1) { set newProbabilities w/= idx <- newProbabilities[idx] * 1.1; // Boost probability after positive outcomes } else { set newProbabilities w/= idx <- newProbabilities[idx] * 0.9; // Reduce after non-investment outcomes } } return NormalizeProbabilities(newProbabilities); // Normalize to keep probabilities valid } // Introducing quantum fluctuation to simulate real-world uncertainty operation ApplyQuantumFluctuations(qubits : Qubit[], fluctuationRate : Double) : Unit { for (qubit in qubits) { let angle = 2.0 * PI() * fluctuationRate; R1(angle, qubit); } } // Comprehensive adaptive analysis with fluctuation consideration operation ComprehensiveAdaptiveQuantumAnalysis(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], fluctuationRate : Double, iterations : Int) : Result[] { mutable probabilities = initialProbabilities; mutable results = new Result[0]; for (iteration in 1..iterations) { ApplyQuantumFluctuations(qubits, fluctuationRate); let currentResults = ComprehensiveQuantumDecisionAnalysis(qubits, probabilities, marketVolatility); set probabilities = EnhancedUpdateInvestmentProbabilities(currentResults, probabilities); set results = currentResults; } return results; } // Entry point to execute the adaptive optimization with quantum fluctuations @EntryPoint() operation ExecuteComprehensiveAdaptiveOptimization() : Unit { let initialProbabilities = [0.8, 0.65, 0.55, 0.75, 0.6]; let marketVolatility = [0.2, 0.3, 0.25, 0.15, 0.1]; let fluctuationRate = 0.05; // Quantum fluctuation rate let iterations = 10; // Number of iterations for adaptive adjustments using (qubits = Qubit[Length(initialProbabilities)]) { let finalResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, fluctuationRate, iterations); Message($"Final adaptive investment decision outcomes: {finalResults}"); } } } // Operation to analyze the coherence time of qubits under different market conditions operation AnalyzeQubitCoherence(qubits : Qubit[], coherenceThresholds : Double[]) : Result[] { mutable coherenceResults = new Result[Length(qubits)]; for (idx in 0..Length(qubits) - 1) { // Apply a phase rotation to simulate environmental interaction R1(coherenceThresholds[idx] * PI(), qubits[idx]); // Measure the qubit to determine if it has maintained its coherence set coherenceResults w/= idx <- MResetZ(qubits[idx]); } return coherenceResults; } // Function to dynamically adjust coherence thresholds based on market data function AdjustCoherenceThresholds(marketData : Double[]) : Double[] { return Map(x -> x * 0.01, marketData); // Example: scale market data to represent coherence thresholds } // Operation to execute a full market simulation including coherence analysis operation RunFullMarketSimulation(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { let coherenceThresholds = AdjustCoherenceThresholds(marketData); for (iteration in 1..iterations) { let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); // Run analysis for one cycle let coherenceResults = AnalyzeQubitCoherence(qubits, coherenceThresholds); Message($”Simulation results for iteration {iteration}: {simulationResults}”); Message($”Coherence analysis results for iteration {iteration}: {coherenceResults}”); } } } // EntryPoint to start the full simulation @EntryPoint() operation StartFullSimulation() : Unit { let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60]; let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10]; let marketData = [500.0, 600.0, 550.0, 580.0, 610.0]; // Hypothetical market data points let iterations = 5; // Number of full simulations RunFullMarketSimulation(initialProbabilities, marketVolatility, marketData, iterations); } } // Enhance the coherence analysis to include feedback adjustment based on results operation AdjustQubitCoherenceBasedOnFeedback(qubits : Qubit[], coherenceResults : Result[], adjustmentFactors : Double[]) : Unit { for (idx in 0..Length(qubits) – 1) { let adjustment = adjustmentFactors[idx]; if (ResultAsInt(coherenceResults[idx]) == 1) { // If the qubit maintained coherence, slightly decrease the adjustment factor set adjustmentFactors w/= idx <- adjustment * 0.95; } else { // If the qubit lost coherence, increase the adjustment factor set adjustmentFactors w/= idx <- adjustment * 1.05; } // Apply the adjusted phase rotation R1(adjustment * PI(), qubits[idx]); } } // Operation to run enhanced simulations incorporating dynamic coherence adjustments operation RunEnhancedMarketSimulations(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { let coherenceThresholds = AdjustCoherenceThresholds(marketData); mutable adjustmentFactors = coherenceThresholds; // Initialize adjustments based on initial thresholds for (iteration in 1..iterations) { let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); // Single cycle analysis let coherenceResults = AnalyzeQubitCoherence(qubits, coherenceThresholds); AdjustQubitCoherenceBasedOnFeedback(qubits, coherenceResults, adjustmentFactors); Message($"Enhanced simulation results for iteration {iteration}: {simulationResults}"); Message($"Coherence adjustment factors for iteration {iteration}: {adjustmentFactors}"); } } } // EntryPoint to start the enhanced simulations with dynamic coherence adjustments @EntryPoint() operation StartEnhancedSimulations() : Unit { let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60]; let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10]; let marketData = [500.0, 600.0, 550.0, 580.0, 610.0]; // Example market data points let iterations = 10; // Number of enhanced simulations RunEnhancedMarketSimulations(initialProbabilities, marketVolatility, marketData, iterations); } } // Enhance the adjustment mechanism to consider historical coherence data function UpdateAdjustmentFactorsBasedOnHistory(adjustmentFactors : Double[], historicalCoherence : Result[][], iteration : Int) : Double[] { mutable updatedFactors = adjustmentFactors; // Adjust based on historical results to find a trend in coherence maintenance for (idx in 0..Length(adjustmentFactors) - 1) { let historicalResults = [historicalCoherence[j][idx] for j in 0..iteration - 1]; let successes = Fold(PlusI, 0, [ResultAsInt(result) for result in historicalResults]); // Apply a stronger adjustment if coherence was frequently lost if (2 * successes < iteration) { // Less than 50% success rate set updatedFactors w/= idx <- updatedFactors[idx] * 1.10; } else { set updatedFactors w/= idx <- updatedFactors[idx] * 0.90; } } return updatedFactors; } // Implement a feedback loop to adaptively adjust the coherence strategies over multiple iterations operation RunAdaptiveCoherenceSimulations(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { let initialCoherenceThresholds = AdjustCoherenceThresholds(marketData); mutable adjustmentFactors = initialCoherenceThresholds; mutable historicalCoherence = new Result[][iterations]; for (iteration in 1..iterations) { let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); let coherenceResults = AnalyzeQubitCoherence(qubits, Map(idx -> adjustmentFactors[idx] * PI(), initialCoherenceThresholds)); set historicalCoherence w/= iteration – 1 <- coherenceResults; set adjustmentFactors = UpdateAdjustmentFactorsBasedOnHistory(adjustmentFactors, historicalCoherence, iteration); Message($"Iteration {iteration}: Simulation results - {simulationResults}, Coherence results - {coherenceResults}"); } } } // EntryPoint to execute the adaptive coherence simulations @EntryPoint() operation ExecuteAdaptiveCoherenceSimulations() : Unit { let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60]; let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10]; let marketData = [500.0, 600.0, 550.0, 580.0, 610.0]; let iterations = 20; RunAdaptiveCoherenceSimulations(initialProbabilities, marketVolatility, marketData, iterations); } } // Include a module for visualizing the results of simulations open Microsoft.Quantum.Diagnostics; // Function to convert results into percentage of coherence function CoherencePercentage(historicalCoherence : Result[][], iterations : Int) : Double[] { let totalQubits = Length(historicalCoherence[0]); mutable percentages = new Double[totalQubits]; for (qubitIdx in 0..totalQubits - 1) { let coherenceCount = Fold(PlusI, 0, [ResultAsInt(historicalCoherence[iter][qubitIdx]) for iter in 0..iterations - 1]); let percentage = (100.0 * IntAsDouble(coherenceCount)) / IntAsDouble(iterations); set percentages w/= qubitIdx <- percentage; } return percentages; } // Visualize coherence over multiple iterations to monitor stability and performance operation VisualizeCoherenceTrends(historicalCoherence : Result[][], iterations : Int) : Unit { let coherencePercentages = CoherencePercentage(historicalCoherence, iterations); Message("Coherence percentages over iterations:"); for (idx in 0..Length(coherencePercentages) - 1) { Message($"Qubit {idx}: {coherencePercentages[idx]}%"); } } // Enhance decision making with a Quantum Annealer approach for solving complex optimization problems operation QuantumAnnealerOptimization(initialProbabilities : Double[], iterations : Int) : Result[] { using (qubits = Qubit[Length(initialProbabilities)]) { mutable bestResult = new Result[Length(qubits)]; mutable bestScore = 0.0; for (iter in 1..iterations) { let results = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, [0.05], 0.05, 1); let currentScore = Fold(PlusD, 0.0, [ResultAsDouble(result) for result in results]); if (currentScore > bestScore) { set bestScore = currentScore; set bestResult = results; } } return bestResult; } } // EntryPoint for a comprehensive quantum real estate optimization including annealing simulation @EntryPoint() operation ExecuteQuantumAnnealingOptimization() : Unit { let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60]; let iterations = 100; let optimalResults = QuantumAnnealerOptimization(initialProbabilities, iterations); Message($”Optimal investment decisions after quantum annealing: {optimalResults}”); } // Integrate environmental factors into quantum analysis for real-time adjustments function AdjustProbabilitiesForEnvironmentalFactors(probabilities : Double[], environmentalFactors : Double[]) : Double[] { return Zip(probabilities, environmentalFactors, (prob, env) -> prob * env); } // Update probabilities based on environmental and market conditions operation UpdateProbabilitiesWithRealTimeData(initialProbabilities : Double[], marketData : Double[], environmentalData : Double[]) : Double[] { let marketAdjustedProbabilities = AdjustCoherenceThresholds(marketData); let environmentAdjustedProbabilities = AdjustProbabilitiesForEnvironmentalFactors(marketAdjustedProbabilities, environmentalData); return NormalizeProbabilities(environmentAdjustedProbabilities); } // Run a simulation that adapts to changing real estate market and environmental conditions operation RunDynamicSimulation(initialProbabilities : Double[], marketVolatility : Double[], marketData : Double[], environmentalData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { mutable dynamicProbabilities = initialProbabilities; for (iteration in 1..iterations) { let updatedProbabilities = UpdateProbabilitiesWithRealTimeData(dynamicProbabilities, marketData, environmentalData); let simulationResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, updatedProbabilities, marketVolatility, 0.05, 1); Message($”Dynamic simulation results for iteration {iteration}: {simulationResults}”); // Update probabilities based on the latest simulation results and real-time data set dynamicProbabilities = updatedProbabilities; } } } // EntryPoint to execute dynamic simulations accounting for market and environmental changes @EntryPoint() operation ExecuteDynamicSimulations() : Unit { let initialProbabilities = [0.80, 0.65, 0.55, 0.75, 0.60]; let marketVolatility = [0.20, 0.30, 0.25, 0.15, 0.10]; let marketData = [500.0, 600.0, 550.0, 580.0, 610.0]; // Simulated market data points let environmentalData = [1.0, 0.8, 0.9, 1.1, 0.85]; // Environmental impact factors let iterations = 15; RunDynamicSimulation(initialProbabilities, marketVolatility, marketData, environmentalData, iterations); } or (iteration in 1..iterations) { let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); let currentRisk = CalculateRiskFromResults(currentResults); if (currentRisk < bestRisk) { set bestRisk = currentRisk; set bestDecisions = currentResults; } Message($"Iteration {iteration}: Current Risk = {currentRisk}"); } Message($"Best investment decisions with lowest risk: {bestDecisions}"); } } // EntryPoint to run the risk-adjusted simulation for real estate investment @EntryPoint() operation ExecuteRiskAdjustedSimulations() : Unit { let initialProbabilities = [0.70, 0.60, 0.65, 0.80, 0.75]; let marketVolatility = [0.25, 0.35, 0.30, 0.20, 0.25]; let iterations = 20; RiskAdjustedInvestmentDecisions(initialProbabilities, marketVolatility, iterations); // Introduce a feedback mechanism to refine investment strategies over time operation FeedbackBasedRefinement(initialResults : Result[], initialRisk : Double, qubits : Qubit[], probabilities : Double[], marketVolatility : Double[], iterations : Int) : (Result[], Double) { mutable refinedResults = initialResults; mutable refinedRisk = initialRisk; for (iteration in 1..iterations) { let updatedProbabilities = UpdateProbabilitiesWithRealTimeData(probabilities, Map(x -> x + 0.01 * iteration, marketVolatility), probabilities); // Slightly adjust market data let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, updatedProbabilities, marketVolatility, 0.05, 1); let currentRisk = CalculateRiskFromResults(currentResults); // Check if the new strategy offers a lower risk if (currentRisk < refinedRisk) { set refinedRisk = currentRisk; set refinedResults = currentResults; } } return (refinedResults, refinedRisk); } // Implement a decision loop that adapts based on feedback over multiple market scenarios operation DecisionFeedbackLoop(initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { let (initialResults, initialRisk) = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); let (optimalResults, optimalRisk) = FeedbackBasedRefinement(initialResults, initialRisk, qubits, initialProbabilities, marketVolatility, iterations); Message($"Optimal risk-adjusted decisions after feedback loop: {optimalResults}"); Message($"Achieved risk level: {optimalRisk}"); } } // EntryPoint to execute the entire decision process including dynamic feedback @EntryPoint() operation StartDecisionFeedbackProcess() : Unit { let initialProbabilities = [0.75, 0.70, 0.65, 0.60, 0.55]; let marketVolatility = [0.20, 0.22, 0.25, 0.28, 0.30]; let iterations = 10; DecisionFeedbackLoop(initialProbabilities, marketVolatility, iterations); // Enhance the feedback loop with environmental considerations function IncorporateEnvironmentalFactors(probabilities : Double[], environmentalImpact : Double[]) : Double[] { return Zip(probabilities, environmentalImpact, (prob, impact) -> prob * impact); } // Modify the decision process to include environmental data in the feedback loop operation EnvironmentalFeedbackDecisionLoop(initialProbabilities : Double[], marketVolatility : Double[], environmentalData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { // Initial comprehensive analysis to set baseline results and risk let (baselineResults, baselineRisk) = ComprehensiveAdaptiveQuantumAnalysis(qubits, initialProbabilities, marketVolatility, 0.05, 1); mutable optimalResults = baselineResults; mutable optimalRisk = baselineRisk; for (iteration in 1..iterations) { // Adjust probabilities for market and environmental factors each iteration let adjustedProbabilities = UpdateProbabilitiesWithRealTimeData(initialProbabilities, marketVolatility, environmentalData); let envAdjustedProbabilities = IncorporateEnvironmentalFactors(adjustedProbabilities, environmentalData); let (currentResults, currentRisk) = FeedbackBasedRefinement(baselineResults, baselineRisk, qubits, envAdjustedProbabilities, marketVolatility, 1); // Evaluate if current iteration provides better risk management if (currentRisk < optimalRisk) { set optimalRisk = currentRisk; set optimalResults = currentResults; } } Message($"Optimal decisions with environmental considerations: {optimalResults}"); Message($"Lowest achieved risk: {optimalRisk}"); } } // EntryPoint to initiate the environmentally adjusted decision feedback loop @EntryPoint() operation ExecuteEnvironmentallySensitiveOptimizations() : Unit { let initialProbabilities = [0.65, 0.60, 0.70, 0.75, 0.80]; let marketVolatility = [0.25, 0.20, 0.30, 0.35, 0.25]; let environmentalData = [0.95, 1.05, 1.00, 0.90, 0.85]; // Example environmental impacts let iterations = 15; EnvironmentalFeedbackDecisionLoop(initialProbabilities, marketVolatility, environmentalData, iterations); // Advanced function to dynamically adjust market volatility based on external economic indicators function DynamicallyAdjustMarketVolatility(marketVolatility : Double[], economicIndicators : Double[]) : Double[] { return Zip(marketVolatility, economicIndicators, (volatility, indicator) -> volatility * indicator); } // Integrate advanced economic indicators into the decision-making process operation IntegrateEconomicIndicators(initialProbabilities : Double[], marketVolatility : Double[], economicIndicators : Double[], environmentalData : Double[], iterations : Int) : Unit { using (qubits = Qubit[Length(initialProbabilities)]) { // Initial setup with environmental and economic adjustments let envAdjustedProbabilities = IncorporateEnvironmentalFactors(initialProbabilities, environmentalData); let econAdjustedVolatility = DynamicallyAdjustMarketVolatility(marketVolatility, economicIndicators); mutable optimalResults = new Result[Length(qubits)]; mutable optimalRisk = 1.0; // Start with the highest possible risk for (iteration in 1..iterations) { let currentProbabilities = UpdateProbabilitiesWithRealTimeData(envAdjustedProbabilities, econAdjustedVolatility, environmentalData); let (currentResults, currentRisk) = ComprehensiveAdaptiveQuantumAnalysis(qubits, currentProbabilities, econAdjustedVolatility, 0.05, 1); // Check for optimal risk and results if (currentRisk < optimalRisk) { set optimalRisk = currentRisk; set optimalResults = currentResults; } // Provide feedback for each iteration Message($"Iteration {iteration}: Current Risk = {currentRisk}, Results = {currentResults}"); } // Final output after iterations Message($"Final optimal decisions with economic indicators considered: {optimalResults}"); Message($"Final optimal risk level: {optimalRisk}"); } } // EntryPoint to execute the simulation with economic and environmental feedback @EntryPoint() operation ExecuteAdvancedEconomicOptimization() : Unit { let initialProbabilities = [0.70, 0.65, 0.60, 0.55, 0.50]; let marketVolatility = [0.22, 0.28, 0.25, 0.21, 0.27]; let economicIndicators = [1.02, 0.98, 1.05, 0.99, 1.03]; // Simulated economic factors let environmentalData = [0.88, 0.92, 0.91, 0.89, 0.90]; // Environmental impacts let iterations = 20; IntegrateEconomicIndicators(initialProbabilities, marketVolatility, economicIndicators, environmentalData, iterations); } // Optimize feedback mechanism to refine probability adjustments based on both risk and return function RefineProbabilitiesBasedOnPerformance(results : Result[], risks : Double[], returns : Double[]) : Double[] { mutable refinedProbabilities = new Double[Length(results)]; for (idx in 0..Length(results) - 1) { if (ResultAsInt(results[idx]) == 1) { // Increase investment probability if the result was positive and adjust based on risk/return ratio set refinedProbabilities w/= idx <- returns[idx] / risks[idx]; } else { // Decrease probability to align with lower performance or higher risk set refinedProbabilities w/= idx <- returns[idx] * risks[idx]; } } return NormalizeProbabilities(refinedProbabilities); } // Include an analysis phase to evaluate returns vs. risks before adjusting probabilities operation AnalyzeAndAdjustInvestments(qubits : Qubit[], probabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit { mutable bestResults = new Result[Length(qubits)]; mutable bestPerformance = 0.0; for (iteration in 1..iterations) { let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1); let currentRisks = CalculateRiskFromResults(currentResults); let currentReturns = CalculateReturnsFromResults(currentResults); // Assume this function exists let performanceScore = Fold(PlusD, 0.0, Map(idx -> currentReturns[idx] / currentRisks[idx], Indices(currentReturns))); if (performanceScore > bestPerformance) { set bestPerformance = performanceScore; set bestResults = currentResults; } // Adjust probabilities based on new insights from the latest iteration set probabilities = RefineProbabilitiesBasedOnPerformance(currentResults, currentRisks, currentReturns); } Message($”Optimal decisions based on refined adjustments: {bestResults}”); Message($”Best performance score: {bestPerformance}”); } // EntryPoint to execute the refined adjustment process for quantum-based real estate investments @EntryPoint() operation ExecuteRefinedAdjustmentProcess() : Unit { let initialProbabilities = [0.68, 0.73, 0.77, 0.65, 0.70]; let marketVolatility = [0.23, 0.19, 0.26, 0.22, 0.24]; let iterations = 15; using (qubits = Qubit[Length(initialProbabilities)]) { AnalyzeAndAdjustInvestments(qubits, initialProbabilities, marketVolatility, iterations); } } // Function to simulate market fluctuations and adjust probabilities dynamically function SimulateMarketFluctuations(currentProbabilities : Double[], fluctuationRate : Double) : Double[] { return Map(prob -> prob * (1.0 + (RandomReal() – 0.5) * fluctuationRate), currentProbabilities); } // Operation to perform a full market simulation including dynamic adjustments for market fluctuations operation PerformFullMarketSimulation(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit { mutable probabilities = initialProbabilities; for (iteration in 1..iterations) { // Simulate market fluctuations at each iteration set probabilities = SimulateMarketFluctuations(probabilities, 0.1); // 10% fluctuation rate let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1); Message($”Results for iteration {iteration}: {currentResults}”); // Update probabilities based on performance analysis let currentRisks = CalculateRiskFromResults(currentResults); let currentReturns = CalculateReturnsFromResults(currentResults); // Assume function calculates returns set probabilities = RefineProbabilitiesBasedOnPerformance(currentResults, currentRisks, currentReturns); } Message($”Final probabilities after full market simulation: {probabilities}”); } // EntryPoint to initiate a comprehensive simulation with fluctuation adjustments @EntryPoint() operation StartComprehensiveMarketSimulation() : Unit { let initialProbabilities = [0.60, 0.65, 0.70, 0.75, 0.80]; let marketVolatility = [0.24, 0.22, 0.25, 0.23, 0.21]; let iterations = 20; using (qubits = Qubit[Length(initialProbabilities)]) { PerformFullMarketSimulation(qubits, initialProbabilities, marketVolatility, iterations); } } // Function to simulate market fluctuations and adjust probabilities dynamically function SimulateMarketFluctuations(currentProbabilities : Double[], fluctuationRate : Double) : Double[] { return Map(prob -> prob * (1.0 + (RandomReal() – 0.5) * fluctuationRate), currentProbabilities); } // Operation to perform a full market simulation including dynamic adjustments for market fluctuations operation PerformFullMarketSimulation(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit { mutable probabilities = initialProbabilities; for (iteration in 1..iterations) { // Simulate market fluctuations at each iteration set probabilities = SimulateMarketFluctuations(probabilities, 0.1); // 10% fluctuation rate let currentResults = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1); Message($”Results for iteration {iteration}: {currentResults}”); // Update probabilities based on performance analysis let currentRisks = CalculateRiskFromResults(currentResults); let currentReturns = CalculateReturnsFromResults(currentResults); // Assume function calculates returns set probabilities = RefineProbabilitiesBasedOnPerformance(currentResults, currentRisks, currentReturns); } Message($”Final probabilities after full market simulation: {probabilities}”); } // EntryPoint to initiate a comprehensive simulation with fluctuation adjustments @EntryPoint() operation StartComprehensiveMarketSimulation() : Unit { let initialProbabilities = [0.60, 0.65, 0.70, 0.75, 0.80]; let marketVolatility = [0.24, 0.22, 0.25, 0.23, 0.21]; let iterations = 20; using (qubits = Qubit[Length(initialProbabilities)]) { PerformFullMarketSimulation(qubits, initialProbabilities, marketVolatility, iterations); } } // Implement additional analysis to evaluate the stability of investment decisions over time function EvaluateDecisionStability(historicalResults : Result[][], iterations : Int) : Double { mutable stabilityScores = new Double[Length(historicalResults[0])]; for (qubitIdx in 0..Length(historicalResults[0]) – 1) { let decisions = [ResultAsInt(historicalResults[iter][qubitIdx]) for iter in 0..iterations – 1]; let mean = Average(decisions); let variance = Fold(PlusD, 0.0, [PowD(dec – mean, 2.0) for dec in decisions]) / (Length(decisions) – 1.0); set stabilityScores w/= qubitIdx <- 1.0 - Sqrt(variance); // Higher score indicates more stability } return Average(stabilityScores); } // Run simulations to assess and enhance decision-making stability operation StabilityEnhancedQuantumSimulation(qubits : Qubit[], initialProbabilities : Double[], marketVolatility : Double[], iterations : Int) : Unit { mutable probabilities = initialProbabilities; mutable historicalResults = new Result[][iterations]; for (iteration in 1..iterations) { let results = ComprehensiveAdaptiveQuantumAnalysis(qubits, probabilities, marketVolatility, 0.05, 1); set historicalResults w/= iteration - 1 <- results; set probabilities = LearnFromPastSimulations(historicalResults, probabilities); // Dynamic learning } let stabilityScore = EvaluateDecisionStability(historicalResults, iterations); Message($"Stability score for investment decisions over {iterations} iterations: {stabilityScore}"); } // EntryPoint to execute stability-focused simulations @EntryPoint() operation ExecuteStabilityFocusedSimulation() : Unit { let initialProbabilities = [0.71, 0.67, 0.74, 0.70, 0.73]; let marketVolatility = [0.23, 0.21, 0.24, 0.22, 0.25]; let iterations = 30; using (qubits = Qubit[Length(initialProbabilities)]) { StabilityEnhancedQuantumSimulation(qubits, initialProbabilities, marketVolatility, iterations); } } // Enhance the economic shock adjustment by considering a time-decaying factor on the shock's impact function ApplyTimeDecayingEconomicImpact(probabilities : Double[], economicShockData : Double[], iteration : Int) : Double[] { return Zip(probabilities, economicShockData, (prob, shock) -> { // Decrease the shock impact over time using an exponential decay model let decayFactor = Exp(-0.1 * IntAsDouble(iteration)); // Decay rate example return prob * (1.0 – decayFactor * shock / 100.0); }); } // Run a refined simulation to model the decay of economic shocks over multiple iterations operation SimulateEconomicShockDecay(qubits : Qubit[], initialProbabilities : Double[], economicShockData : Double[], iterations : Int) : Unit { mutable probabilities = initialProbabilities; for (iteration in 1..iterations) { // Apply the time-decaying impact of economic shocks let timeAdjustedProbabilities = ApplyTimeDecayingEconomicImpact(probabilities, economicShockData, iteration); let results = ComprehensiveAdaptiveQuantumAnalysis(qubits, timeAdjustedProbabilities, [0.05], 0.05, 1); // Log results to observe the change over time Message($”Iteration {iteration}: Adjusted Results = {results}”); // Update probabilities based on simulation feedback, assuming continual learning set probabilities = LearnFromPastSimulations([results], probabilities); } } // EntryPoint to execute the time-decay simulation for economic shocks @EntryPoint() operation ExecuteTimeDecayEconomicShockSimulation() : Unit { let initialProbabilities = [0.62, 0.78, 0.83, 0.69, 0.72]; let economicShockData = [3.5, 2.0, 4.0, 3.0, 2.5]; // Initial shock values in percentage let iterations = 25; using (qubits = Qubit[Length(initialProbabilities)]) { SimulateEconomicShockDecay(qubits, initialProbabilities, economicShockData, iterations); } }
wpChatIcon
wpChatIcon
Scroll to Top